Semiparametric Mean–Covariance Regression Analysis for Longitudinal Data

نویسندگان

  • Chenlei LENG
  • Weiping ZHANG
  • Jianxin PAN
چکیده

Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. Existing approaches usually focus on modeling the mean with specification of certain covariance structures, which may lead to inefficient or biased estimators of parameters in the mean if misspecification occurs. In this article, we propose a data-driven approach based on semiparametric regression models for the mean and the covariance simultaneously, motivated by the modified Cholesky decomposition. A regression spline-based approach using generalized estimating equations is developed to estimate the parameters in the mean and the covariance. The resulting estimators for the regression coefficients in both the mean and the covariance are shown to be consistent and asymptotically normally distributed. In addition, the nonparametric functions in these two structures are estimated at their optimal rate of convergence. Simulation studies and a real data analysis show that the proposed approach yields highly efficient estimators for the parameters in the mean, and provides parsimonious estimation for the covariance structure. Supplemental materials for the article are available online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation

For longitudinal data, when the within-subject covariance is misspecified, the semiparametric regression estimator may be inefficient. We propose a method that combines the efficient semiparametric estimator with nonparametric covariance estimation, and is robust against misspecification of covariance models. We show that kernel covariance estimation provides uniformly consistent estimators for...

متن کامل

Semiparametric estimation of covariance matrices for longitudinal data.

Estimation of longitudinal data covariance structure poses significant challenges because the data are usually collected at irregular time points. A viable semiparametric model for covariance matrices was proposed in Fan, Huang and Li (2007) that allows one to estimate the variance function nonparametrically and to estimate the correlation function parametrically via aggregating information fro...

متن کامل

Analysis of Longitudinal Data with Semiparametric Estimation of Covariance Function.

Improving efficiency for regression coefficients and predicting trajectories of individuals are two important aspects in analysis of longitudinal data. Both involve estimation of the covariance function. Yet, challenges arise in estimating the covariance function of longitudinal data collected at irregular time points. A class of semiparametric models for the covariance function is proposed by ...

متن کامل

Empirical likelihood semiparametric nonlinear regression analysis for longitudinal data with responses missing at random

This paper develops the empirical likelihood (EL) inference on parameters and baseline function in a semiparametric nonlinear regression model for longitudinal data in the presence of missing response variables. We propose two EL-based ratio statistics for regression coefficients by introducing the working covariance matrix and a residual-adjusted EL ratio statistic for baseline function. We es...

متن کامل

Joint estimation of mean-covariance model for longitudinal data with basis function approximations

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t When the selected parametric model for the covariance structure is far from the true one, the corresponding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010